Skip to contents

Calculate traditional statistics related to a threshold

Usage

cate(
  model,
  observation,
  threshold,
  cutoff = NA,
  nobs = 8,
  rname,
  to.plot = FALSE,
  col = "#4444bb",
  pch = 19,
  lty = 3,
  lcol = "#333333",
  lim,
  verbose = TRUE,
  ...
)

Arguments

model

numeric vector with paired model data

observation

numeric vector with paired observation data

threshold

reference value

cutoff

(optionally the maximum) valid value for observation

nobs

minimum number of observations

rname

row name

to.plot

TRUE to plot a scatter-plot

col

color for points

pch

pch of points

lty

lty of threshold lines

lcol

col of threshold lines

lim

limit for x and y

verbose

display additional information

...

arguments passed to plot

Value

a data.frame including: Accuracy (A); Critical Success Index (CSI); Probability of Detection (POD); Bias(B); False Alarm Ratio (FAR); Heidke Skill Score (HSS); Pearce skill Score (PSS) in

References

Yu, S., Mathur, R., Schere, K., Kang, D., Pleim, J., Young, J., ... & Rao, S. T. (2008). Evaluation of real‐time PM2. 5 forecasts and process analysis for PM2. 5 formation over the eastern United States using the Eta‐CMAQ forecast model during the 2004 ICARTT study. Journal of Geophysical Research: Atmospheres, 113(D6).

Examples

data <- 0.02 * 1:100
set.seed(666)
model  <- abs(rnorm(100,0.01))

oldpar <- par(pty="s")
cate(model = model, observation = data, threshold = 1,
     to.plot = TRUE, rname = 'example')

#>           n  Obs       Sim thr  A      CSI POD  B      FAR HSS PSS
#> example 100 1.01 0.8272308   1 43 18.57143  26 66 60.60606 -14 -14
par(oldpar)